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A BARELY IMPLICIT CORRECTION FOR FLUX-CORRECTED TRANSPORT

L INTRODUCTION

The solution of time dependent compressible flow problems is complicated

by conflicting requirements of mathematical accuracy, nonlinearity, physical

conservation and positivity. This is especially true near discontinuities where
"accurate" high order algorithms produce ripples while linear monotonic (i.e.

positivity preserving) schemes are highly diffusive. After Godunov [1] showed

that a linear algorithm ensures positivity only if it is first order, the next logical

step was to look at nonlinear methods to develop effectively higher order, more

accurate monotonic schemes. The first high-order monotone algorithm (Boris

[2]) was designed to maintain local positivity near steep gradients while keeping

a high order of accuracy eisewhere. The major principles of the monotone high

order algorithms are that they maintain positivity through a procedure that

uses a nonlinear combination of diffusive and antidiffusive fluxes. The Flux-

Corrected Transport (FCT) algorithm that we use in this paper [3, 4] is made

fourth order by the appropriate subtraction of corrected fluxes. Other mono-

tone methods have been reviewed by Woodward and Collela [51 and Baer [6].

In this paper we confine our discussions to a Barely Implicit Correction (BIC)

to FCT. BIC is also extendable to other monotone methods.

Positivity-preserving monotone FCT methods were developed to calculate

shocks accurately. Even for subsonic flows with discontinuities, their high accu-

racy produced much better solutions than standard finite difference techniques.

The early FCT methods were explicit. No serious limitation arose from the

explicitness in supersonic flows because the major features of interest in the

flow move at about the sound speed. Using these methods for subsonic flows,

however, is economical only if the characteristic velocities in the flow field are

a reasonable fraction of the speed of sound [7, 8] or if the fast sound waves are

mathematically removed from the system of equations.

Manuscript approved June 26, 1986.



The Barely Implicit Correction described in this paper was motivated by

the need to calculate subsonic flows accurately in which the velocities of the

important flow structures are much lower than the speed of sound. In typical

cases, we are interested in flow velocities from centimeters to tens of meters

per second. These flow velocities are encountered, for example, in laminar

flames and low-speed fuel injection in engines. Our objectives are to remove the

timestep limit imposed by the speed of sound, retain the accuracy required to

resolve the detailed features of the flow, and reduce the computational costs.

The obvious way to beat the sound-speed limit on the timestep is to make

the calculation implicit. This has been done successfully for many linear meth-

ods, such as the MacCormack method 191, the Beam and Warming method [10],

and the ICE and RICE methods of Hirt and Cook [11]. In addition, recent de-

velopments have been reported for implicit, nonlinear PPM [12] and TVD [13]

methods. A major problem with all of these methods is that they are relatively

expensive, even though they can be made relatively accurate.

Another approach is the asymptotic methods. Examples of these are the

methods developed by Jones and Boris [14], Rehm and Baum [15] and Paolucci

[16]. In these methods, the only effects of compression that are allowed are the

changes in density due to heating or cooling. Pressure fluctuations are filtered

out, thus removing the timestep limit imposed by the sound speed. However,

other effects from sound waves are removed in this process.

A a useful approach was given by Casulli and Greenspan [17]. Their analysis

indicated that it is not necessary to treat all of the terms in the gas dynamic

equations implicitly to be able to use longer timesteps than those dictated by

explicit stability limits. Only those explicit terms which force this limit need to

be treated implicitly.

The algorithm presented in this paper has two steps. The first step is

explicit. It is performed at a large timestep governed by a CFL condition on

the fluid velocity. This step should be done with an accurate nonlinear monotone

method, and we have used FCT in the examples given. The second step is an

implicit correction step requiring the solution of one elliptic equation for the

pressure correction. The term "Barely Implicit Correction" emphasizes our use
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of the idea of Casulli and Greenspan, that only certain terms must be treated

implicitly.

The total cost per timestep of BIC-FCT is about the same as for a full

explicit FCT step. Thus the cost of a complete calculation is one or two orders

of magnitude below that required if a very slow flow were treated explicitly.

Since only one elliptic equation is solved, the method is considerably faster

than many implicit methods commonly used. In addition, using a nonlinear

monotone method for the explicit step ensures high accuracy.

I. METHOD OF SOLUTION

Derivation of the Barely Implicit Correction

We are solving the compressible gas dynamics conservation equations for

density p, momentum density pv, and total internal energy, E,

ap -V.pv (i)
t

apv -V. pvv- VP, (2)at8E
-- V.(E+P)v, (3)

where the total energy density E is

E +1p2. (4)

The equation of state relating pressure and internal energy is

P = (-1)E. (5)

In a recent paper, Casulli and Greenspan [171 showed that it is not necessary to

treat every term in a finite-difference algorithm implicitly to avoid the timestep

constraint imposed by the Courant condition. Further, they showed that only

those terms containing the pressure in Eq. (2) and the velocity in Eq. (3) must

be treated implicitly. Their paper provides the starting concepts for the work

we present. In addition, we have extended their analysis to include an implic-
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itness parameter, w, that can be used to vary the degree of implicitness of the

algorithm. In general, we can have 0.5 <w w < 1, where the implicit terms are

centered in time for w = 0.5. For w < 0.5, the method is found to be unstable

for sufficiently large timesteps.

There are two stages to the algorithm. One stage is an explicit predictor

that determines the provisional values and -',

At (6)At

at -V.p v v - VP ° , (7)

The tilde denotes predictor values at the new time, and the superscripts o and

n are used to denote the old time and new time, respectively. So far only time

has been differenced, not space. The implicit forms of Eqs. (2) and (3) are

P -_ = -VQpv ,v° - V[,P" + (1- w)P°, (8)
At

En - E°

At = -V. (E. + P°)(wv" + (1 - w)v , (9)

where w is the implicitness parameter discussed above. When w = 1, the algo-

rithm is completely implicit and reverts to the original equations analyzed by

Casulli and Greenspan.

We can reduce this implicit system to only one equation by eliminating vn

between Eq. (8) and (9). To do this, we first define the change in pressure, 6P,

as

6P = w(Pn - P ° ). (10)

Then the correction equation for momentum can be obtained in terms of 6P by

subtracting Eq. (7) from Eq. (8),

p pV - =_V(p - po) = -Vbp. (11)

We obtain the new velocity by rearranging Eq. (11) and letting p" = i, so

that

n At
v = ---- + . (12)
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We obtain a correction equation for energy using the equation of state with -1

constant, Eq. (4),
=6P

- - 1)w(13)

where the w factor appears from the definition of 6P. We find 6P by substituting

Eqs. (12) and (13) into Eq. (9),

_2 _ POvo2 + p E o + PO\ VP
2At + 1)WA AU~V(

_WV .-(Eo + po)i, (14)

- (1 - w)V. (E0 + P°)v° .

Note that the kinetic energy change is included explicitly. For convenience, we

define the quantity E,

-- -V . (E + Po) [wi + (1 -w)v] . (15)At

This allows us to rewrite Eq. (14),

bP tV (E 0 + PO \Vbp = E - E i 2 -povo 2  (6
( y- )wAtWAtV. P-z - At 2At (16)

which provides us with an elliptic equation for bP. The right hand side of

Eq. (16) is evaluated explicitly using Eq. (15). After the elliptic equation is

solved for P, momentum and energy are corrected by Eqs. (11) and (13).

Note that we started with two equations with implicit terms, and now we have

reduced it to one equation, Eq. (16).

The Barely Implicit Correction is carried out in three stages. In the first,

Eqs. (6), (7), and (15) are integrated with any one-step explicit method. The

pressure correction equation, Eq. (16) is solved by an elliptic solver in the second

stage. The last stage requires the use of Eqs. (11) and (13) to obtain the final

values of momentum and energy at the new timestep.

Solution Procedure

The derivation given above does not involve any specific choice of method

for differencing the spatial derivatives. The only restriction so far is that the

spatial derivatives must be evaluated at the appropriate time levels indicated
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by the superscripts. This allows great flexibility in the choice of the differencing

scheme for these terms. Thus we can integrate the explicit predictor equations,

Eqs. (6), (7), and (15) with FCT. This gives us the benefits of using a high-

order monotone method. We have given the name BIC-FCT to this particular

combination of BIC and FCT. Tests, such as those presented below, indicate

that it has the same accuracy and flexibility as FCT.

At each timestep, the solution procedure we have implemented is divided

into the three stages:

1. Explicit predictor stage

The density and momentum are advanced explicitly as specified by Eqs. (6) and

(7) using FCT. This produces the intermediate quantities, A and Ai. The i is

found from A/5. Then i is used to obtain E given by Eq. (15). FCT is also

used to obtain E.

2. Solution of Eq. (16) for 6P

In one dimension, the solution to the difference form of Eq. (16) requires the

solution of a system of linear equations by a tridiagonal matrix solver. In two

dimensions, the solution requires an elliptic solver. For the two-dimensional

calculations shown below, we used a multigrid method [18]. A substantial part

of the computer time required in this stage is in setting up the coefficients for

an elliptic equation solver.

3. Momentum and energy corrections

These corrections are obtained from the pressure change 6P using Eqs. (11) and

(13), respectively. These corrected values and the density obtained explicitly in

the first stage are the starting conditions at the new timestep.

These three stages are carried out at every timestep. The derivatives in the

pressure difference equation, Eq. (16), are approximated by central differences.

All physical quantities are calculated at cell centers, and those values needed at ..

cell interfaces are obtained by averaging.

This technique can be implemented in one, two, or three dimensions. In

one and two dimensions, several different geometries are possible. For example,

we have implemented two-dimensional planar and axisymmetric geometries, and

one-dimensional Cartesian, cylindrical, and spherical. Any boundary conditions
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that are commonly used with the standard FCT modules can be used with this

algorithm [7].

III. TESTS OF THE METHOD

Advection of a One-Dimensional Contact Discontinuity

The problem we consider first is the flow of air through a duct in one

dimension. The duct is initially filled with air at standard temperature and

pressure. Then cold air with twice the density flows into the duct. There is

a contact discontinuity at the location where the cold, dense air and normal

air meet. In the absence of diffusive processes, the contact discontinuity should

move at the velocity of the incoming air. This numerical test shows the ability

of BIC-FCT to propagate a contact discontinuity with the same accuracy as

FCT.

The computational domain was divided into 200 evenly spaced cells of 1 cm.

Initially, the discontinuity was 0.1 m from the inlet. The flow velocity of air

in the duct was 10 m/s. The inlet conditions corresponding to the cold air are

held fixed throughout the calculation.

The timestep used in this calculation is 0.5 ms, which is the time required

for the fluid to cross half a cell. This should be compared to the Courant limit

of 24 As. Typical explicit methods are forced to employ a timestep of less than

half of the Courant limit to control the growth of of perturbations in pressure

and velocity. In this example, a factor of forty to fifty is gained over the explicit

timestep.

Figure 1 shows the density profiles at intervals of fifty steps. The disconti-

nuity, initially across one cell, spreads to three or four cells as it moves across the

system. Most important, however, is that the discontinuity spreads no further

throughout the course of the solution and there are no ripples in the solutions.

Both of these features are in the underlying explicit FCT algorithm. The results

presented in the figure were obtained with w = 1. The influence of sound waves

in this problem are negligible, so that any stable value of w gives the same result.
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Sound Wave Damping

In most finite-difference methods, high-frequency sound waves are attenu-

ated. Implicit methods, however, tend to damp all frequencies, with the lower

frequencies damped least. The problem we now present tests the sound-wave
damping in BIC-FCT.

We consider a closed, one-dimensional pipe 1 m long in which the fluid .
velocity was initialized with a sinusoidal variation. The maximum amplitude

of the variation was 1 m/s at the center of the pipe. Effectively, the initial N.p

conditions correspond to a sound wave in the pipe with a wavelength of 2 m.

Each curve in Fig. 2 shows the fluid velocity at the center of the pipe as

a function of the number of cycles for a different value of w. The damping is

greatest when w = 1, which is when the method is completely implicit. The

damping decreases as w is reduced, and it becomes negligble when w = 0.5. Any

further reduction in w leads to instability of the numerical method. We conclude

that the amount of damping is a strong function of implicitness parameter. The

results shown in Fig. 2 were for a sound wave with a cell size of 2.5 cm using a

timestep of'0.1 msec.

The dispersion relation, obtained directly from the calculations, is shown

in Fig. 3a for CFL = 0.5. The CFL number is defined as

CFL = sound speed x time step

cell size

These calculations were made by varying the timestep as well as the number of

cells in the 1 m pipe. The product of the wave number, k, and the cell size Ax

is inversely related to the accuracy of representation of the wave. The number

ci cells per wavelength is given by

27r
N -kAx",..

On the vertical axis, we show wt and wt, the observed and theoretical frequencies

of the wave. A totally dispersion free algorithm, in which Wcd = wt, would

yield the 45 degree line shown. Curves for different values of the implicitness %

%
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parameter are presented. For comparison purposes, the results for the explicit,

predictor-corrector JPBFCT method [4] are included. JPBFCT requires two

applications of the FCT algorithm at each timestep. This two-step process

makes JPBFCT second order in time.

Figure 3b indicates the change in amplitude of the wave in one period. The

amplification is always less than unity, indicating that the wave is damped. If

the amplification were greater than unity, the calculation would be unstable. As

expected, damping increases when the method is more implicit. Poorly resolved

wavelengths are damped, even by the fully explicit method. It should be noted .,.

that BIC-FCT with w = 0.55 performs nearly as well as the explicit JBPFCT.

Values of w nearer 0.5 brings results of the two methods even closer.

Figures 4a, 4b and 5a, 5b give the dispersion relation and damping for

CFL = 2 and CFL = 10 respectively. Representation of the sound wave

deteriorates more rapidly as resolution is lost for these CFLs. Curves for CFL =

10 are shorter than those for lower CFL because the timestep becomes too large

to resolve the oscillatory nature of the wave.

This example points out the need for caution when attempting to resolve

sound waves at high CFLs. Poorly resolved wavelengths are strongly damped

and cannot be adequately represented. However, if only long wavelengths !ire
of interest, BIC-FCT can provide a substantial gain over an explicit method. :L

A Two-Dimensional Problem

When BIC-FCT is applied in two dimensions, the same basic three-step

procedure is used. In addition, we use time splitting in the two spatial di-

mensions to implement the explicit FCT predictor and energy corrector step.

However, for the method to work, the elliptic pressure change equation must be

solved in two dimensions.

The solution of the elliptic pressure change equation is a substantial part of

the computional effort at each timestep. In one dimension, the finite-difference

form of the pressure difference equation can be solved efficiently in 0 (N) opera-

tions, where N is the number of grid points, using standard tridiagonal methods

(for example, see Roache [191). In two dimensions, it is important to have an

efficient elliptic solver, and preferably one that is not limited to specific types

9



of problems with specific boundary conditions. In the calculation presented be-

low we use a multigrid method, MGRID [18], which is very fast and requires

0 (NlogN) operations. This method is suitable for the parallel processing in

pipelined, parallel, and vector computers. It is straightforward to use any other

suitable elliptic solver.

The two-dimensional Cartesian test problem was selected to demonstrate

the ability of BIC-FCT to treat nearly incompressible swirling flows. A potential

vortex with a central core was used as an initial condition in a square 10 m x

10 m region. The initial conditions correspond to the analytic solution of a line

vortex with diffusion which is of the form [20]

Vftcngerntial --= c. 1 _e72/4/t]

where c and v are constants. The flow very rapidly adjusts to the presence

of the walls, but this does not affect the flow close to the vortex center. In

this test, a stretched 40 x 40 grid was used with the smallest cells 10 cm in K

size placed at the center of the vortex. The maximum velocity, at the start of

the calculation, was 30 m/s. A conservative timestep of 1 ms was used. This

should be contrasted to the 60 to 120 us timesteps required for stability in a

fully explicit method. In this nearly steady-state problem, the effects of pressure

fluctuations are expected to be negligible. Therfore, we could use w = 1, the

fully implicit method.

For flow visualization purposes, the lower half of the fluid has been marked

and appears as the dark area in Fig. 6. In the absence of diffusion processes,

either physical or numerical, this interface remains sharp as the fluid rotates at a

constant velocity. Figures 7 and 8 show the position of the interface after 50 and

200 timesteps respectively. The interface between the marked and unmarked

fluid is no longer sharp, due to numerical diffusion. The interface remains fairly

sharp outside the core region.

The velocity decay is given in a more quantitative manner by the scatter

plots shown in the next set of figures. Tangential and radial components of

velocity are plotted as a function of distance from the vortex center. Crosses

denote the velocity actually obtained from the program and the solid line pro-

vides a least squares fit of the data to the analytic solution of the vortex with
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diffusion [20]. The initial condition is shown in Figs. 9a and b. Figures 10a,

10b, and 11a, llb show the velocity after 50 and 200 timesteps, respectively.

The peak tangential velocity decreases due to numerical diffusion. However,

the effective diffusion coefficient is not a constant either in space or time which

leads to an imperfect fit of the data to the analytic solution. Scatter in the

tangential velocity at the same location is due to the nonuniform retardation

caused by varying amounts of numerical diffusion. Since the flow is essentially

incompressible, nonzero radial velocities are generated.

We now examine the time it takes to do one computational timestep. Ta-

ble 1 shows a timing comparison between BIC-FCT and the standard module,

JPBFCT, very similar to that described by Boris [4]. In fact, the explicit FCT

predictor in BIC-FCT is similar to the corrector step of JPBFCT. The table

shows that the computational time required per timestep compares extremely

favorably to that for the explicit method, especially at the larger grid sizes.

IV. SUMMARY AND DISCUSSION

In this paper we have described the Barely Implicit Correction method,

BIC, for calculating subsonic flows. As pointed out by Casulli and Greenspan,

only the pressure and velocity terms in the momentum and energy equations

respectively have to be treated implicitly. This is sufficient to remove the sound-

speed limit on the timestep. We then manipulated the equations to yield a single

implicit equation, which is solved for a correction to an explicit predictor step.

BIC can be used with any spatial differencing scheme. BIC-FCT provides the

accuracy of the high-order monotone flux-corrected transport method but allows

the large timesteps possible with an implicit method.

A number of test problems showed that BIC-FCT maintains the desirable

high-order monotone characteristics of the explicit FCT algorithm. First, we

showed that it could propagate a contact discontinuity as well as the two-step

JPBFCT. We also presented a two-dimensional example of a swirling flow.

The implicitness parameter, w, plays an important role in BIC-FCT when-

ever sound waves and pressure oscillations are important in the solution. Damp-

11 
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ing is negligble for long wavelenths and timesteps when w = 0.5. When sound

waves are not important, w can be set to unity.

The major gain is that the timestep is no longer restricted by the sound

speed. This improvement is achieved at little or no additional cost per timestep.

The cost of solving the elliptic equation is recovered by the elimination of the

half-step calculations in explicit FCT.

In two-dimensional problems, an efficient method of solution of the elliptic

pressure equation is essential. The multigrid technique MGRID used here is

among the fastest. However, the application of this technique to even modestly

complicated geometries is not straightforward. Unstructured multigrid methods

[21J should provide the necessary flexibility.

Equations (9), (10), and (16) are in conservative form. Since the pres-

sure correction only appears as a gradient in the velocity correction, vorticity

generation and transport are unchanged by BIC. Thus vorticity stays a local,

convected quantity.

In summary, BIC-FCT has opened up the possibility of doing very accurate,

very slow flow calculations in which compression is important. Future compu-

tational directions include extensions to finite elements 122] and to addition of

other physical processes such as gravity, viscosity, and chemical reactions to

* simulate premixed flames, diffusion flames, and turbulent jets.

ACKNOWLEDGEMENTS

This work was sponsored by NASA in the Microgravity Science Program

and by the Naval Research Laboratory through the Office of Naval Research.

The authors would like to thank Rainald LUhner, Rick DeVore and Paul Wood-

ward for their helpful suggestions.

12



REFERENCES

1. S. K. 0odunov, Mat. Sb. 47 (1959), 271-306.

2. J. P. burls, in "Computing as a Language of Physics", pp. 171-189, Interna-

tional Atomic Energy Agency, Vienna, 1971.

3. J. P. Boris and D. L. Book, Meth. Comp. Phys. 16 (1976), 85-129.

4. J. P. Boris, "Flux-Corrected Transport Modules for Generalized Continuity

Equations," NRL Memorandum Report 3237, Naval Research Laboratory,

Washington, D.C., 1976. (AD-A023 891)

5. P. Woodward and P. Colella, J. Comp. Phys. 54 (1984), 115-173.

6. M. R. Baer and R. J. Gross, "A Two-dimensional Flux-Corrected Transport

Solver for Convectively Dominated Flows," SAND85-0613, Sandia National

Laboratories, Albuquerque, New Mexico, 1986.

7. F. F. Grinstein, E. S. Oran and J. P. Boris, J. Fluid Mech. 165 (1986),

201-220.

8. K. Kailasanath, J. H. Gardner, J. P. Boris and E. S. Oran, in "Proceed-

ings of the 22
'fd JANNAF Combustion Meeting," pp. 341-350, Pasadena,

California, 1985, Vol. I, CPIA-PUB-432. (AD-A165 503)

9. R. W. MacCormack, in "Proceedings of the Second International Conference

on Numerical Methods in Fluid Dynamics," (M. Holt, Ed.), pp. 151-163,

Springer-Verlag, New York, 1971.

10. R. M. Beam and R. F. Warming, AIAA J. 16 (1978), 393-402.

11. C. W. Hirt, A. A. Amsden and J. I. Cook, J. Comp. Phys. 14 (1974),

227-254.

12. B. A. Fryxell, P. R. Woodward, P. Colella and K-H. Winkler, "An Implicit-

Explicit Hybrid Method for Lagrangian Hydrodynamics," to appear in

J. Comp. Phys. 63 (1986), 283-310.

13. H. C. Yee and A. Harten, in "AIAA 7th Computational Fluid Dynamics

Conference," pp. 228-241, Cincinnati, Ohio, 1985.

14. W. W. Jones and J. P. Boris, J. Phys. Chem. 81 (1978), 2532-2534.

13

Ali



15. R. G. Rehm and H. R. Baum, J. Research (National Bureau of Standards) b

83 (1978), 297-308.

16. S. Paolucci, "On the Filtering of Sound from the Navier - Stokes Equations,"

SAND82-8257, Sandia National Laboratories, Albuquerque, New Mexico,

1982.

17. V. Casulli and D. Greenspan, Int. J. Num. Methods Fluids 4 (1984),

1001-1012.

18. C. R. DeVore, "Vectorization and Implementation of an Efficient Multigrid

Algorithm for the Solution of Elliptic Partial Differential equations," NRL

Memorandum Report 5504, 1984. (AD-A149 049)

19. P. J. Roache, "Computational Fluid Mechanics," Hermosa, Albuquerque,

New Mexico, 1972.

20. G. K. Batchelor, "An Introduction to Fluid Dynamics," Cambridge Uni-

versity Press, Cambridge, 1967.

21. R. L6hner and K. Morgan, "Unstructured Multigrid Methods: First Expe-

riences," in "Proceedings of the Third International Conference on Numer-

ical Methods in Thermal Problems," (R.W. Lewis et. al. Eds.), Pineridge

Press, Swansea, 1985.

22. R. Lihner, K. Morgan, M. Vahdati, J. P. Boris and D. L. Book, "FEM-

FCT: Combining Unstructured Grids with High Resolution," submitted to

J. Comp. Phys., 1986.

41

i6

14 '



Table 1.
Timings* per Step of BIC-FCT and JPBFCT

20 x20 40 x40 80 X80

BIC-FOT
explicit 6.8 ins 17.0 mns 54.1 ins

elliptic 3.8 8.4 22.5
other 2.7 5.9 17.1
total 13.3 31.3 93.7
per point 33.3 /As 19.6 jss 14.6 A~s

JPBFCT 13.6 ins 33.9 ins 108.1 ins
per point 34.0 As 21.2 jts 16.9 A~s

*on CRAY XMP-12
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Figure 1 - Density profiles of a propagating contact discontinuity at 50

step intervals.
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Figure 2 - Effect of (o on the damping of a sound wave.
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Figure 3 - Dispersion and damping of sound waves by BIC, CFL - 0.5.
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Figure 3 (Continued) - Dispersion and damping of sound waves by BIC, CFL - 0.5.
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Figure 4 - Dispersion and damping of sound waves by BIC, CFL - 2.0.
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Figure 4 (Continued) -Dispersion and damping of sound waves by BIC CFL - 2.0.
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Figure 5 -Dispersion and damping of sound waves by BIC, CFL - 10.0.
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Figure 5 (Continued) -Dispersion and damping of sound waves by BIC, CFL =10.0.
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Figure 6 - Flow visualization of two-dimensional vortexnfow,
initial condition.
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Figure 7 - Flow visualization of two-dimensional vortex flow,
50th step.
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Figure 8 - Flow visualization of two-dimensional vortexnfow,
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Figure 9 - Scatter plot of velocity in vortex flow, initial condition.
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Figure 9 (Continued) -Scatter plot of velocity in vortexnfow, initial condition.
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Figure 10 - Scatter plot of velocity in vortex flow, 50th step.
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Figure I11 (Continued) - Scatter plot of velocity in vortex flow, 200th step.
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